Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance

نویسندگان

  • Rebecca Frise
  • Konrad Bradley
  • Neeltje van Doremalen
  • Monica Galiano
  • Ruth A. Elderfield
  • Peter Stilwell
  • Jonathan W. Ashcroft
  • Mirian Fernandez-Alonso
  • Shahjahan Miah
  • Angie Lackenby
  • Kim L. Roberts
  • Christl A. Donnelly
  • Wendy S. Barclay
چکیده

Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection on hemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses

The emergence of human-transmissible H5N1 avian influenza viruses poses a major pandemic threat. H5N1 viruses are thought to be highly genetically diverse both among and within hosts; however, the effects of this diversity on viral replication and transmission are poorly understood. Here we use deep sequencing to investigate the impact of within-host viral variation on adaptation and transmissi...

متن کامل

Reduced airborne transmission of oseltamivir-resistant pandemic A/H1N1 virus in ferrets.

BACKGROUND The H275Y neuraminidase mutation conferring oseltamivir resistance has been reported in several pandemic A/H1N1 (pH1N1) isolates. We sought to evaluate transmission of this mutant virus through the direct contact and the airborne (aerosol and droplet) routes in the ferret model. METHODS Groups of four ferrets were infected with either wild-type (WT) or oseltamivir-resistant pH1N1 (...

متن کامل

The R292K mutation that confers resistance to neuraminidase inhibitors leads to competitive fitness loss of A/Shanghai/1/2013 (H7N9) influenza virus in ferrets.

BACKGROUND Neuraminidase (NA) inhibitors are the only licensed therapeutic option for human zoonotic H7N9 infections. An NA-R292K mutation that confers broad-spectrum resistance to NA inhibitors has been documented in H7N9 patients after treatment. METHODS We evaluated the transmission potential of a human influenza A H7N9 isolate with a NA-R292K mutation in the ferret model followed by genot...

متن کامل

Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air.

The influenza virus genes that confer efficient transmission of epidemic and pandemic strains in humans have not been identified. The rapid spread and severe disease caused by the 1918 influenza pandemic virus makes it an ideal virus to study the transmissibility of potentially pandemic influenza strains. Here, we used a series of human 1918-avian H1N1 influenza reassortant viruses to identify ...

متن کامل

Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza Viruses and Respiratory Droplet Transmission in Ferrets

The seasonality of influenza virus infections in temperate climates and the role of environmental conditions like temperature and humidity in the transmission of influenza virus through the air are not well understood. Using ferrets housed at four different environmental conditions, we evaluated the respiratory droplet transmission of two influenza viruses (a seasonal H3N2 virus and an H3N2 var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016